Tetrahedron
Letters

Stereoselective synthesis of the $\mathbf{C}_{9}-\mathbf{C}_{19}$ lactone-dipropionate fragment of calyculin \mathbf{C}

Kaisa Karisalmi and Ari M. P. Koskinen*
Laboratory of Organic Chemistry, Helsinki University of Technology, PO Box 6100, FIN-02015 HUT, Finland

Received 23 June 2004; revised 24 August 2004; accepted 2 September 2004
Available online 23 September 2004

Abstract

A highly diastereoselective synthesis of the title fragment of calyculin C has been developed based on an internal asymmetric induction between a chiral aldehyde and Z-crotyl trifluorosilane. © 2004 Elsevier Ltd. All rights reserved.

Calyculins form a class of highly cytotoxic metabolites from the marine sponge Discodermia calyx originally isolated by Fusetani and co-workers. ${ }^{1}$ They have proven to be strong serine/threonine protein phosphatase inhibitors ${ }^{2}$ and based on this property, calyculins might be potential anti-cancer agents. ${ }^{3}$

The $\mathrm{C}_{9}-\mathrm{C}_{19}$ lactone-dipropionate fragment 5 of calyculin C (boxed in Fig. 1) contains 8 out of the total of 16 stereocenters and is thereby a key substructure of this sponge metabolite.

Figure 1.

[^0]Several different syntheses of this fragment have been published with varying strategies. ${ }^{4}$ The most challenging part in the synthesis of this $\mathrm{C}_{9}-\mathrm{C}_{20}$ fragment is the anti, anti,anti-stereotetrad, which can be reached either by linear ${ }^{4 e, d}$ or by convergent ${ }^{4 a-c}$ approaches. However, the syntheses published so far have many weaknesses (too many steps, poor diastereoselectivity, or need for inversion of stereocenters). Therefore, improved routes to this fragment are still needed.

We have recently published a convergent approach toward the $\mathrm{C}_{9}-\mathrm{C}_{19}$ fragment ${ }^{5}$ of calyculin C , which unfortunately led to a wrong diastereomer. In this communication we would like to present a short, highly dia-stereo-, and enantioselective linear synthesis of the lactone-dipropionate fragment 5 of calyculin C.

Our synthesis of $\mathrm{C}_{9}-\mathrm{C}_{19}$ fragment of calyculin C is based on a short and highly enantioselective synthesis of the key intermediate $\mathbf{1}^{5}$ followed by two asymmetric crotylation reactions (Scheme 1). Armstrong and co-workers have used a similar strategy in their synthesis of the $\mathrm{C}_{9}-\mathrm{C}_{25}$ fragment of calyculin ${ }^{6}$ but in the last crotylation step they obtained only a disappointing 1:1.3 diastereoselection. We wished to improve this selectivity by using Z-crotyl trifluorosilane as the crotylation reagent in the second crotylation step. ${ }^{7}$

The synthesis of the key intermediate $\mathbf{1}$ is shown in Scheme $2 .{ }^{5}$ The first crotylation reaction was realized with the crotyl borane derived from E-butene and (+)$\mathrm{MeOB}(\mathrm{Ipc})_{2}$ (Scheme 3). ${ }^{8}$ The reaction yielded a $6: 1$ mixture of two diastereomeric anti-homoallylic alcohols, the major product ${ }^{8}$ being isolated from the mixture by

Scheme 1.

Scheme 2. Reagents and conditions: (a) i. LDA, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, ii. $\mathrm{PhCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHO},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}, 75 \%$; (b) $\mathrm{NEt}_{3}, \mathrm{MsCl}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$, 85%; (c) OsO_{4}, (DHQD) ${ }_{2} \mathrm{PHAL}, \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}, 78 \%$ quantitative, 91% ee after crystallization; (d) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{MeI}, \mathrm{Et}_{2} \mathrm{O}$, reflux, $21 \mathrm{~h}, 62 \%$; (e) L-Selectride, THF, $-78^{\circ} \mathrm{C}, 10 \mathrm{~min}, 58-69 \%$; (f) DIPEA, MEMCl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{reflux}^{2}, 44 \mathrm{~h}, 73-$ 87%; (g) $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}, \mathrm{rt}, 0.5 \mathrm{~h}, 91 \%$ quantitative; (h) TPAP, NMO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 0.5 \mathrm{~h}, 65-75 \%$.

Scheme 3. Reagents and conditions: (a) i. the crotyl reagent was prepared from (+)-IpcBOMe and E-butene in THF at $-78^{\circ} \mathrm{C}$, ii. $\mathrm{BF}_{3} \cdot \mathrm{OEt}^{2}$ the aldehyde $1,-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, iii. ethanolamine; (b) i. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, ii. triphenylphosphine, rt, 3 h ; (c) i. aldehyde $3,4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 0.5 \mathrm{~h}, \mathrm{ii} .0^{\circ} \mathrm{C}$, DIPEA, Z-crotyl trifluorosilane, 4 h ; (d) 2-methoxypropene, pyridinium p-toluenesulfonate (PPTS) (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 0.5 \mathrm{~h}$.
simple flash chromatography. The homoallylic alcohol 2 was then treated with O_{3} to furnish the corresponding β hydroxy aldehyde 3^{9} (Scheme 3). The final crotylation was performed with Z-crotyl trifluorosilane. ${ }^{10,11}$ The existing hydroxyl group directs the stereochemistry toward the anti,anti,anti-stereotetrad without any external source of chirality. ${ }^{7}$ This crotylation produced a single diastereomer 4^{12} based on the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product. Finally the diol $\mathbf{4}$ was converted to the corresponding ketal 5. ${ }^{13}$

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analyses revealed the relative stereochemistry of the ketal ring (Fig. 2). The ${ }^{13} \mathrm{C}$ spectrum provided strong evidence for a syn-1,3-diol relationship ${ }^{14}$ while the couplings in the ${ }^{1} \mathrm{H}$ NMR spectrum and NOESY correlations revealed the axialaxial relationship of the protons in the ketal ring.

The spectroscopic evidence together with the known facts about the two crotylation reactions ${ }^{6,7}$ lead us to

Figure 2.
propose that the stereochemistry of the stereotetrads in 4 and 5 has to be anti,anti,anti.

These preliminary results of the synthesis of the challenging anti,anti,anti-dipropionate structure of calyculin C are very important in the field of natural product total synthesis. The anti,anti,anti-stereochemistry was achieved in only three steps with satisfactory diastereoselectivity. The crotylation methodology (Z-crotyl trifluorosilane) recently developed by Chemler and Roush ${ }^{7}$
proved to be a useful reaction in the synthesis of the anti,anti,anti-stereotetrad. Scaling up and optimization of the reactions are currently under way.

Acknowledgements

Financial support from the Finnish Academy is gratefully acknowledged.

References and notes

1. Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K. J. Am. Chem. Soc. 1986, 108, 2780.
2. Sheppeck, J. E., II; Gauss, C.-M.; Chamberlin, A. R. Bioorg. Med. Chem. 1997, 5, 1739.
3. Bridges, A. J. Chemtracts-Org. Chem. 1995, 8, 73.
4. (a) Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992, 114, 9434; (b) Yokokawa, F.; Hamada, Y.; Shiori, T. Chem. Commun. 1996, 871; (c) Smith, A. B.; Friestad, G. K.; Duan, J. J.-W.; Barbosa, J.; Hull, K. G.; Iwashima, M.; Qui, Y.; Spoors, P. G.; Bertonesque, E.; Salvatore, B. A. J. Org. Chem. 1998, 63, 7596; (d) Ogawa, A. K.; Armstrong, R. W. J. Am. Chem. Soc. 1998, 120, 12435; (e) Tanimoto, N.; Gerritz, S. W.; Sawabe, A.; Noda, T.; Filla, S. A.; Masamune, S. Angew. Chem., Int. Ed. 1994, 33, 673.
5. Karisalmi, K.; Koskinen, A. M. P. Synthesis 2004, 1331.
6. Scarlato, G.; DeMattei, J. A.; Chong, L. S.; Ogawa, A. K.; Lin, M. R.; Armstrong, R. W. J. Org. Chem. 1996, 61, 6139.
7. Chemler, S. R.; Roush, W. R. J. Org. Chem. 2003, 68 , 1319.
8. Compound 2: t-BuOK ($42 \mathrm{mg}, 0.37 \mathrm{mmol}, 150 \mathrm{~mol} \%$) was suspended in dry THF (1.5 mL) in a flame-dried flask under Ar and this mixture was cooled to $-78^{\circ} \mathrm{C}$. Excess E butene (condensed in another flask) was added via cannula, followed by $n-\mathrm{BuLi}(0.185 \mathrm{~mL}, \quad c=2.0 \mathrm{M}$, $0.37 \mathrm{mmol}, 150 \mathrm{~mol} \%$). The yellow mixture was stirred at $-45^{\circ} \mathrm{C}$ for 15 min , then re-cooled to $-78^{\circ} \mathrm{C}$ and (Ipc) 2^{-} BOMe ($158 \mathrm{mg}, 0.5 \mathrm{mmol}, 200 \mathrm{~mol} \%$) in 1 mL of THF was added via cannula (the yellow color disappeared). This mixture was stirred at $-78^{\circ} \mathrm{C}$ for $1 / 2 \mathrm{~h}$, then $\mathrm{BF}_{3} \cdot \mathrm{OEt}$ ($41 \mathrm{~mL}, 0.325 \mathrm{mmol}, 130 \mathrm{~mol} \%$) and aldehyde $\mathbf{1}(75 \mathrm{mg}$, $0.25 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. After 1 h the reaction mixture was concentrated and re-dissolved in 3 mL of dry $\mathrm{Et}_{2} \mathrm{O}$, cooled in an ice-bath and 15 mL of ethanolamine was added. The mixture was stirred at rt over night, filtered through Celite, and purified by flash chromatography (60% EtOAc-hexane). $19 \mathrm{mg}(21 \%$) of a $6: 1$ mixture of two diastereomers was isolated and the major diastereomer (12 mg) was obtained in pure form after second mini-flash purification (15% IPA-hexane). $R_{\mathrm{f}} 0.2$ (60% EtOAc-hexane, PMA stain); $[\alpha]_{\mathrm{D}}+4.2$ (c 1.0, CHCl_{3}); IR (film) $3502,1776 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.04\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}=\mathrm{CHCHCH}_{3} \mathrm{R}, J=6.9\right), 1.24(6 \mathrm{H}, \mathrm{s}$, RCOCCH $\left.H_{3} \mathrm{CH}_{3} \mathrm{COO}\right), 1.56\left(1 \mathrm{H}\right.$, ddd, $\mathrm{OHCHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ CHOMe, $J=14.7,9.8,6.9$), 1.81 (1 H , ddd, OHCH$\left.\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CHOMe}, J=14.7,4.5,1.8\right), 2.17-2.26(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}=\mathrm{CHCHCH}_{3} \mathrm{R}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{R}\right), 3.51-$ $3.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{R}\right), 3.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OR}\right), 3.65-$ $3.81\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CHOHCH} 2 \mathrm{CHOMe}+\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{R}\right)$, $4.02(1 \mathrm{H}, \mathrm{d}, ~ R C H O M E M, ~ J=4.2)$, $4.49(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{R}_{2} \mathrm{CHOCOR}, ~ J=4.2,7.8\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right.$, $J=6.7), 4.78\left(1 \mathrm{H}, \mathrm{d}, \quad \mathrm{OCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{O}, \quad J=6.7\right), \quad 5.06-5.12$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.75-5.84\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{CH}_{2}=\mathrm{C} H \mathrm{R}\right.$, $J=16.8,11.0,8.1) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 16.0,18.9,23.3$,
$33.2,44.5,45.1,59.0,68.4,71.6,72.4,79.0,82.5,83.4,97.2$, 115.9, 140.1, 180.1; HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{7}+\mathrm{Na}$: 383.2046; found: $383.2051\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.
9. Compound 3: olefin $2(15 \mathrm{mg}, 0.042 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ in a flame-dried flask, the mixture was cooled to $-78^{\circ} \mathrm{C}$, and ozone was bubbled through the mixture until a blue color persisted (2 min). Then O_{2} was bubbled through the mixture until the color disappeared, after which triphenylphosphine $(16 \mathrm{mg}$, $0.062 \mathrm{mmol}, 150 \mathrm{~mol} \%$) was added, the cooling bath was removed and the mixture was stirred at rt for 3 h . The solvent was evaporated in vacuo and the crude product was purified by mini-flash (15% to $>30 \%$ IPA-hexane) and $9 \mathrm{mg}(60 \%)$ of the β-hydroxyaldehyde was obtained. R_{f} 0.06 (15\% IPA-hexane, PMA stain); $[\alpha]_{\mathrm{D}}-3.1 \quad(c$ $0.75, \mathrm{CHCl}_{3}$); IR (film) $3436,1772,1722 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ $\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): 1.16 \quad\left(3 \mathrm{H}, \quad \mathrm{d}, \mathrm{O}=\mathrm{CHCHCH}_{3} \mathrm{R}\right.$, $J=7.2$), $1.26\left(6 \mathrm{H}, \mathrm{s}, \mathrm{RCOCCH}_{3} \mathrm{CH}_{3} \mathrm{COO}\right), 1.69(1 \mathrm{H}$, dd, $\left.\mathrm{OHCHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOMe}, J=14.6,7.8\right), 1.93(1 \mathrm{H}$, ddd, $\left.\mathrm{OHCHCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CHOMe}, J=14.6,4.1,2.0\right), 2.47-2.52(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{O}=\mathrm{CHCHCH}_{3} \mathrm{R}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{R}\right)$, 3.51-3.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OCH} \mathrm{H}_{2} \mathrm{R}$), $3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} \mathrm{H}_{3} \mathrm{OR}\right)$, 3.60-3.67 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{R}, \mathrm{OH}\right), 3.72-3.76$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{R}\right), 3.85\left(1 \mathrm{H}\right.$, td, $\mathrm{CH}_{2} \mathrm{CHO}-$ $\mathrm{MeR}_{2}, J=7.8,4.1$), 4.02 ($1 \mathrm{H}, \mathrm{d}, \mathrm{RCHOMEM}, J=4.2$), 4.08-4.12 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{O}=\mathrm{CHCHCH}_{3} \mathrm{CHOHR}\right), 4.54(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{R}_{2} \mathrm{CHOCOR}, J=7.8,4.2\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right.$, $J=6.5), 4.78\left(1 \mathrm{H}, \mathrm{d}, \mathrm{OCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{O}, J=6.5\right), 9.77(1 \mathrm{H}, \mathrm{d}$, $\mathrm{RHC}=\mathrm{O}, J=2.0) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.5,18.8,23.3$, $33.5,45.1,52.0,59.0,59.3,68.3,70.7,71.7,78.8,82.6,83.2$, 97.2, 179.9, 205.0; HRMS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{8}+\mathrm{Na}$: 385.1838; found: $385.1806\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.
10. Kira, M.; Hino, T.; Sakurai, H. Tetrahedron Lett. 1989, 30, 1099.
11. Personal communication with Professor Sherry Chemler.
12. Compound 4: β-hydroxy aldehyde $\mathbf{3}$ ($3 \mathrm{mg}, 8.26 \mathrm{mmol}$, $100 \mathrm{~mol} \%)$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ in a pearshaped flame-dried flask under Ar together with 10 mg of crushed and activated $4 \AA$ molecular sieves. The mixture was stirred at rt for 25 min , then cooled in an ice-bath, after which DIPEA ($4 \mathrm{~mL}, 0.025 \mathrm{mmol}, 300 \mathrm{~mol} \%$) and Z crotyl trifluorosilane ($4 \mathrm{~mL}, 0.026 \mathrm{mmol}, 320 \mathrm{~mol} \%$) were added. After 4 h stirring at $0^{\circ} \mathrm{C}$ the reaction was complete and it was quenched with satd $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted $3 * \mathrm{EtOAc}$, the combined organic phase were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the drying agent was filtered, and the solvent evaporated in vacuo. After purification with miniflash (15% IPA-hexane) $1-2 \mathrm{mg}$ of the desired anti, anti,anti aldol product was obtained. $R_{\mathrm{f}} 0.55$ (30\% IPAhexane, PMA stain); $[\alpha]_{\mathrm{D}}+4.6$ (c 0.13, CHCl_{3}); IR (film) $3468,1773 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.85(3 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{CHOHCHCH} \mathrm{H}_{3} \mathrm{CHOH}, \quad J=6.8\right), \quad 1.12\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}=\right.$ $\left.\mathrm{CHCHCH}_{3} \mathrm{R}, J=7.0\right), 1.25\left(6 \mathrm{H}, \mathrm{s}, \mathrm{RCOCCH}_{3} \mathrm{CH}_{3} \mathrm{COO}\right)$, 1.55-1.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OHCHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOMe}$), $1.63-1.73(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHOHCHCH} 3 \mathrm{CHOH}), 1.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{OHCHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\right.$ CHOMe, $\quad J=12.2$), $2.43-2.47 \quad\left(1 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}_{2}=\right.$ $\mathrm{CHCHCH}_{3} \mathrm{R}$), $3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{R}\right), 3.38-3.40$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3} \mathrm{CHOHCHCH} 3\right), ~ 3.53-3.57(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{R}\right), 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{H}_{3} \mathrm{OR}\right), 3.66-3.77(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{R}\right), 3.83\left(1 \mathrm{H}\right.$, td, $\mathrm{CH}_{2} \mathrm{CHOMeR} 2, J=7.8$, 4.4), $3.96\left(1 \mathrm{H}, \mathrm{t}, \mathrm{CHCH}_{3} \mathrm{CHOHCH}_{2}, J=7.8\right), 4.00(1 \mathrm{H}$, d, RCHOMEM, $J=4.4), 4.54\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{R}_{2} \mathrm{CHOCOR}\right.$, $J=7.8,4.4), 4.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}, J=6.5\right), 4.84(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{OCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{O}, J=6.5\right), 5.06-5.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHR}\right), 5.90$ $\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{CH}_{2}=\mathrm{CHR}, J=17.4,10.4,8.2\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, CDCl_{3}): 12.8, 17.8, 18.9, 23.4, 29.7, 40.7, 41.8, 45.1, 59.1, $59.4,68.5,71.8,77.2,78.1,79.4,82.7,83.5,97.4,115.8$, 139.0, 180.0; HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{8}+\mathrm{Na}$: 441.2464; found: $441.2449\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.
13. Compound 5: diol $4(1.5 \mathrm{mg}, 3.54 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ was dissolved in 0.2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2-methoxypropene ($2 \mathrm{~mL}, 17.9 \mathrm{mmol}, 500 \mathrm{~mol} \%$) followed by pyridinium p toluenesulfonate (PPTS) (cat.) were added. After 0.5 h the reaction was quenched with satd NaHCO_{3}, the mixture was extracted $3 * \mathrm{EtOAc}$, the combined organic phase were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the drying agent was filtered, and the solvent evaporated. The crude product was not purified before analysis. $R_{\mathrm{f}} 0.5$ ($30 \% \mathrm{IPA}$-hexane, PMA stain); IR (film) $1776 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.76\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CHORCHCH} 3 \mathrm{CHOR}^{2}, J=6.6\right)$, $1.05\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}=\mathrm{CHCHCH}_{3} \mathrm{R}, J=6.9\right), 1.26(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{RCOCCH}_{3} \mathrm{CH}_{3} \mathrm{COO}\right), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right) \mathrm{O}\right), 1.40$ $\left(3 \mathrm{H}, \mathrm{s}, \quad \mathrm{OC}\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right) \mathrm{O}\right), \quad 1.37-1.40(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}-$ $\left.\mathrm{CHCH}_{3} \mathrm{CHO}\right), 1.63\left(1 \mathrm{H}\right.$, ddd, ORCHCH $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOMe}$, $J=14.9,9.5,2.5), 2.05\left(1 \mathrm{H}\right.$, ddd, ORCHCH $\mathrm{a}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CHOMe}$, $J=14.9,5.7,1.5), 2.39-2.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCHCH}_{3} \mathrm{R}\right)$, $3.38\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}=\mathrm{CHCHCH}_{3} \mathrm{CHOR}, J=9.8,2.1\right), 3.39$
$\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{R}\right), 3.41-3.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{O}-\right.$ $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{OR}\right), \quad 3.42\left(3 \mathrm{H}, \quad \mathrm{s}, \quad \mathrm{CH}_{3} \mathrm{OR}\right), \quad 3.53-3.56$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{OR}\right), 3.68(1 \mathrm{H}, \quad$ ddd, $\left.\mathrm{CH}_{2} \mathrm{CHOMeR} 2, J=8.2,5.7,2.5\right), 3.69-3.74(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OR}\right), 3.76\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CHCH}_{3} \mathrm{CHORCH} 2\right.$, $J=11.1, \quad 9.5), 4.14(1 \mathrm{H}, \mathrm{d}, \quad$ RCHOMEM, $J=3.8)$, $4.54\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{R}_{2} \mathrm{CHOCOR}, J=8.2,3.8\right), 4.72(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}, J=7.0\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}, J=7.0\right)$, 4.97-5.03 $(2 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}=\mathrm{CHR}), \quad 5.84(1 \mathrm{H}, \quad$ ddd, $\left.\mathrm{CH}_{2}=\mathrm{C} H \mathrm{R}, \quad J=17.2, \quad 10.3, \quad 9.2\right) ; \quad \delta_{\mathrm{C}} \quad(100 \mathrm{MHz}$, CDCl_{3}): 11.8, 18.0, 18.9, 19.6, 23.1, 30.1, 31.4, 35.7, 39.6, 45.5, 57.8, 59.1, 68.4, 69.5, 71.6, 77.2, 77.7, 82.0, 83.8, 97.1, 97.4, 114.9, 139.7, 180.3; HRMS m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{8}+\mathrm{Na}: 481.2777$; found: 481.2782 $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.
14. (a) Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945; (b) Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099.

[^0]: Keywords: Aldol reactions; Crotylation; Diastereoselectivity; Natural products; Stereoselective synthesis.

 * Corresponding author. Tel.: +358 9451 2526; fax: +358 9451 2538; e-mail: ari.koskinen@hut.fi

